DETERMINATION OF PARTITION COEFFICIENTS OF PYRIDO[1,2-a]-PYRIMIDIN-4-ONE DERIVATIVES BY TRADITIONAL SHAKE, THINLAYER CHROMATOGRAPHIC AND GAS-LIQUID CHROMATOGRAPHIC METHODS

O. PAPP, K. VALKÓ* and Gy. SZÁSZ*
Institute for Pharmaceutical Chemistry, Semmelweis Medical University, Högyes Endre u.g., H-1092 Budapest (Hungary)
I. HERMECZ
Chinoin Pharmaceutical Works, Budapest (Hungary)
and
J. VÁMOS, K. HANKÓ and Zs. IGNÁTH-HALÁSZ
Institute for Pharmaceutical Chemistry, Semmelweis Medical University, Högyes Endre u.9, H-1092 Budapest (Hungary)
(First received March 8th; revised manuscript received April 27th, 1982)

SUMMARY

In the investigation of quantitative structure-activity relationships, one of the most important linear free-energy related parameters is the logarithmic value of water-1-octanol partition coefficients $(\log P)$ and π values derived from that.

Partition coefficients of eighteen pyrido[1,2-a]pyrimidin-4-one compounds were measured for the water-1-octanol solvent system by spectrophotometric methods. R_{M} values and corrected ΔI values of the compounds were also determined by thin-layer chromatographic and gas-liquid chromatographic methods, respectively. The excellent correlations found between these $\log P, R_{M}$ and corrected ΔI values prove that liquid-liquid partition data can be obtained not only by thin-layer chromatography or high-performance liquid chromatography but also by gas-liquid chromatography.

INTRODUCTION

In the study of quantitative structure-activity relationships $\log P$ values for the water-1-octanol system are used for the characterization of hydrophobicity ${ }^{1,2}$. This liquid liquid system is accepted as the best for characterizing the distribution of drugs in living systems. 1-Octanol plays a specific role because it shows similarity to the

[^0]lipoid phase of living beings. Many attempts have been made to find a substitute for the traditional shake method for the determination of water-1-octanol partition coefficients. As stated by Collander ${ }^{3}$, a linear relationship exists between the logarithmic values of the partition coefficients measured in two different solvent systems, as shown by eqn. 1:
\[

$$
\begin{equation*}
\log P_{2}=a \log P_{1}+b \tag{1}
\end{equation*}
$$

\]

where a and b are constants, and P_{1} and P_{2} relate to the partition coefficients in the two solvent systems.

Leo ${ }^{4}$ showed the limitations of eqn. 1. Linearity between $\log P_{1}$ and $\log P_{2}$ values will exist if one of the following requirements is met: the primary solvation forces in the two solvent systems, or the solutes under consideration, are sufficiently similar. This latter similarity can be assumed in the case of a homologous series of solutes and possibly also in case of congeneric solutes.

Relationships were investigated among results obtained by thin-layer chromatography (TLC), gas-liquid chromatography (GLC) and shake methods. The close linear relationship gives information on the common character of the predominant solute-solvent interactions in the applied chromatographic system. The advantages of chromatographic methods are as follows: small amounts of substances are needed, impurities do not disturb the measurements, and there is no need to find proper analytical methods for measuring the concentrations in the two solvents. If the solubility is low in water or 1 -octanol, chromatographic methods give more accurate results. Dearden and Tomlinson ${ }^{5,6}$ found good correlation between pharmacological activity and R_{M} values measured on several stationary phases of congeneric compounds. In their opinion the dynamic partition coefficients obtained by chromatographic methods are more similar to in wivo distribution processes than a static equilibrium.

Pyrido[1,2-a]pyrimidin-4-one compounds synthesized by Mészáros and coworkers ${ }^{7-10}$, which show biological activity in the central nervous system, were chosen as model compounds.

THEORETICAL AND EXPERIMENTAL

Determination of partition coefficients by shake method

The compounds were dissolved in water with Sörensen buffer (pH 5), and the appropriate amount of 1-octanol was added to the solutions so that the concentration in the water phase could be measured spectrophotometrically. After the mixture had been shaken for 30 min in a shaking machine, the two phases were separated in a centrifuge at 750 g for 5 min . Samples were taken by a syringe from the lower water phase and the concentrations were measured by using a Spektromom 195 spectrophotometer in the UV range. It seemed to be enough to determine only the decrease of concentration in the water phase. The partition coefficients were calculated from eqn. 2 :

$$
\begin{equation*}
P=\frac{E_{0}-\mathbf{E}_{1}}{E_{1}} \cdot \frac{v_{\text {water }}}{v_{1 \text { octanol }}} \tag{2}
\end{equation*}
$$

where E_{0} is the measured absorbance in water before partitioning, E_{1} is the measured absorbance in water after partitioning, and $v_{\text {water }} / v_{1 \text { octanol }}$ is the ratio of the water and octanol volumes.

The measurements were carried out at room temperature ($20 \pm 1^{\circ} \mathrm{C}$). Note that the P values obtained are only distribution coefficients, because these slightly basic compounds may accept protons at the given pH and the true partition coefficient relates only to the same molecular state.

Determination of partition data by TLC

The basic principle ${ }^{6}$ of the determination of partition data by TLC is shown in eqn. 3:

$$
\begin{equation*}
R_{M}-\log \left(\frac{1}{R_{F}}-1\right)=\log P+\log V_{\mathrm{s}} / V_{\mathrm{m}} \tag{3}
\end{equation*}
$$

where R_{F} is the measured retention factor, P is the partition coefficient, and $V_{\mathrm{s}} / V_{\mathrm{m}}$ is the layer constant.

According to eqn. $3, R_{M}$ values are directly proportional to $\log P$ values. Boyce and Millborrow ${ }^{11}$, Biagi et al. ${ }^{12}$, Tomlinson ${ }^{6}$ and others ${ }^{13-22}$ have already applied reversed-phase TLC for the determination of R_{M} values. Paraffin oil or silicon oil as lypophilic stationary phases and acetone with buffer, dioxan or ethanol as hydrophilic mobile phases were used. Biagi et al. ${ }^{12}$ used a mixture of several percent of acetone in water as a mobile phase to get R_{F} values between $0.2-0.8$. A linear relationship has been found between the acetone concentration and R_{M} values. The $R_{M_{0}}$ values at zero concentration of acetone can be calculated from the intercept of the given straight line. So results could be extrapolated to pure water. Waisser et al. ${ }^{17}$ have criticized Biagi's method and they pointed out that non-extrapolated R_{M} values showed better correlation to the partition coefficients. The difference between R_{M} values of a substituted and a parent compound $\left(\Delta R_{M}\right)$ is equivalent to the Hansch hydrophobic substituent constant. Biagi et al. ${ }^{12,19}$ and others ${ }^{20,21}$ pointed out the relationship between not only $\log P$ and R_{M} but also π and ΔR_{M} values. In the case of acidic or basic compounds R_{M} values were corrected ${ }^{22}$.
R_{F} and R_{M} values of pyrido[1,2-a]pyrimidine-4-one derivatives were measured as follows: Kicsclgcl $60 \mathrm{~F}_{254}$ (Mcrck, Darmstadt, G.F.R.) plates were used after keeping them at $160^{\circ} \mathrm{C}$ for 1 h . Compounds were dissolved in 0.5% concentration in methanol. Developments were carried out in a chromatography tank lined with filter paper containing 100 ml of mobile phase (methanol-water, $30: 70$) for a preliminary saturation of 1 h . The distance of development was 15 cm . Detection was at 254 nm .

Determination of liquid-liquid partition data by GLC

According to Kaliszan's recent review ${ }^{23}$, GLC retention data are not related to the hydrophobic properties of the solute. During GLC separation, van der Waals and polar rather than hydrophobic interactions take place. The lack of correlation between GLC retention data and hydrophobic parameters has been shown by several authors ${ }^{24,25}$.

On the contrary Sheehan and Langer ${ }^{26}$, Conder et al. ${ }^{27,28}$, and Boček ${ }^{29}$ showed the theoretical possibility of using GLC to obtain liquid-liquid partition
data. In this paper a more general approach is shown and proved by measurements.
Gas chromatographic retention of a certain compound is in direct proportion to its partition coefficient between the carrier gas and the stationary phase. In order to obtain liquid-liquid partition coefficients, retention properties should be measured on two columns that differ only in the polarity of the stationary phase.

Special care has to be taken avoid adsorption. The Kováts index was used as a retention property. The gas-liquid partition coefficient, K, of a solute is related to the Kováts index as follows:

$$
\begin{equation*}
\log K=\frac{b I}{100}-z h+\log j t_{R_{z}}^{\prime} v_{0}-\log V_{L} \tag{4}
\end{equation*}
$$

where I is the Kováts index, b is the slope of the line obtained by plotting the number of carbon atoms and $\log t_{R_{z}}^{\prime}$ values, $t_{R_{z}}^{\prime}$ is the adjusted retention time of the n-paraffin having z carbon atoms, j is the gas compressibility correction factor, v_{0} is the carrier gas flow-rate, and V_{L} is the stationary phase volume.

From eqn. 4 it can be seen that under given gas chromatographic conditions z, $b, j, t_{R z}^{\prime}, v_{0}$ and V_{L} can be regarded as constants, therefore eqn. 4 can be rewritten as follows:

$$
\begin{equation*}
\log K=\frac{b I}{100}+\text { constant } \tag{5}
\end{equation*}
$$

The quotient of gas-liquid partition coefficients related to two stationary phases with different polarities can be considered as a liquid liquid partition, and it may be expressed by a retention index according to eqn. 6:

$$
\begin{equation*}
\log P=\log \frac{K_{1}}{K_{2}}=\frac{b_{1} I_{1}}{100}-\frac{b_{2} I_{2}}{100}+\text { constant }_{1}-\text { constant }_{2} \tag{6}
\end{equation*}
$$

Subscripts 1 and 2 relate to the two stationary phases. From eqn. 6 a corrected ΔI value is defined in the following way:

$$
\begin{equation*}
\text { corrected } \Delta I=\frac{b_{1} I_{1}}{100}-\frac{b_{2} I_{2}}{100} \tag{7}
\end{equation*}
$$

These corrected ΔI values of the pyrido[1,2-a]pyrimidine-4-one derivatives were correlated to $\log P$ values.

Retention indices of the model compounds (Table I) were measured on four stationary phases (Carbowax $20 \mathrm{M}, \mathrm{OV}-25, \mathrm{OV}-17, \mathrm{OV}-1$) under the conditions shown in Table II. Index values have already been published ${ }^{30}$. Several corrected ΔI values can be obtained from the retention indices on the four stationary phases. The highest correlation between $\log P$ and corrected ΔI occurred when Carbowax 20 M and OV-25 were considered; presumably these two supports have the right difference between their polarities.

TABLE I

MODEL COMPOUNDS INVESTIGATED

Compound No.	R_{1}	R_{2}	R_{3}
la	H	H	H
1b	CH	H	H
Ic	H	H	CH_{3}
ld	H	CH_{3}	H
le	CH_{3}	H	CH_{3}
1f	H	CH_{3}	CH_{3}
1g	CH_{3}	H	$\mathrm{C}_{2} \mathrm{H}_{5}$
lh	$\mathrm{C}_{2} \mathrm{H}_{5}$	H	CH_{3}
li	H	$\mathrm{C}_{2} \mathrm{H}_{5}$	CH_{3}
1 j	CH_{3}	$\mathrm{C}_{2} \mathrm{H}_{5}$	CH_{3}
1 k	CH_{3}	$\mathrm{C}_{3} \mathrm{H}_{7}$	H
11	CH_{3}	$\mathrm{C}_{3} \mathrm{H}_{7}$	CH_{3}
lm	$\mathrm{C}_{3} \mathrm{H}_{7}$	$\mathrm{C}_{2} \mathrm{H}_{5}$	CH_{3}
2 a	H	H	H
2 c	H	H	CH_{3}
2 e	CH	H	CH_{3}
2 f	H	CH_{3}	CH_{3}
2 j		CH_{3}	$\mathrm{C}_{2} \mathrm{H}_{5}$
CH_{3}			

RESULTS AND DISCUSSION

Partition data obtained by the three methods are summarized in Table III. Relationships between chemical structure and $\log P$ or π values have been detailed elsewhere ${ }^{30,31}$. In this paper we would like to underline the relationship of the results

TABLE II
CONDITIONS OF GAS CHROMATOGRAPHIC PROCEDURE
Chromatograph: Hewlett-Packard 5710 A
Integrator: Chinoin Digint 21
Column: $6 \mathrm{ft} . \times 1 / 4 \mathrm{in}$. glass
Column packing: Chromosorb W DMCS
Stationary phases: 5% OV- $17,5 \%$ OV-1, 5% OV- $25,5 \%$ Carbowax 20 M
Carrier gas: nitrogen
Carrier flow-rate $30 \mathrm{ml} / \mathrm{min}$
Column temperature: $220^{\circ} \mathrm{C}$
Detector temperature: $250^{\circ} \mathrm{C}$
Injector temperature: $250^{\circ} \mathrm{C}$
Applications of sample with Hamilton Microliter Syringes
Sample size: 1μ
Solvent: chloroform
Attenuator: 128×10

TABLE III

PARTITION DATA BY THE SHAKE METHOD TLC AND GLC
*

	Shake method*		$T L C^{\star}$			$G L C \star *$				
	$\log P$	S.D.	R_{F}	S.D.	R_{M}	$I_{\text {CW }}{ }^{20 M}$	S.D.	$I_{o v-25}$	S.D.	Corr. $\Delta I_{C W 20 M-O V-25}$
1 a	0.204	± 0.007	0.43	0.03	0.129	2645	3	2124	5	0.256
1 b	0.572	0.009	0.34	0.03	0.281	2689	2	2189	2	0.219
1c	0.736	0.009	0.28	0.03	0.412	2622	2	2150	2	0.192
1 d	0.771	0.012	0.31	0.02	0.346	2638	4	2161	2	0.177
le	1.053	0.006	0.22	0.03	0.561	2663	1	2214	4	0.152
If	1.265	0.029	0.18	0.03	0.666	2622	2	2198	10	0.125
1 g	1.625	0.010	0.12	0.02	0.861	2656	2	2245	1	0.101
1 h	1.592	0.006	0.13	0.03	0.837	2718	1	2292	4	0.110
1 i	1.793	0.009	0.11	0.02	0.918	2659	1	2255	4	0.090
1 j	1.856	0.012	0.09	0.02	1.026	2673	1	2297	4	0.040
1 k	1.752	0.009	0.08	0.02	1.054	2769	2	2358	1	0.080
11	2.221	0.012	0.04	0.01	1.443	2736	4	2374	5	0.017
1 m	2.375	0.017	0.02	0.01	1.633	2732	1	2405	5	-0.031
2 a	-0.144	0.015	0.47	0.03	0.050	2580	1	2128	2	0.171
2c	0.299	0.007	0.38	0.03	0.222	2488	2	2081	3	0.125
2 e	0.668	0.001	0.32	0.03	0.336	2545	2	2159	1	0.085
2 f	0.823	0.010	0.26	0.02	0.465	2483	3	2121	1	0.063
2 j	1.428	0.008	0.14	0.02	0.793	2540	1	2241	2	-0.036

${ }^{*} n=20$.
$\star \star n=6$.

TABLE IV

COMPARISON OF MEASURED AND PREDICTED $\log P$ VALUES

\because	$\log P_{\mathrm{oct} / \text { water }}$ Dependent value	Predicted $\log P$			
		By TLC		By GLC	
		Predicted value	Residual	Predicted value	Residual
1 a	0.204	0.306	-0.102	0.290	-0.086
1 b	0.572	0.547	0.025	0.585	-0.013
1c	0.736	0.754	-0.018	0.799	-0.063
1 d	0.771	0.650	0.121	0.759	0.012
le	1.053	0.990	0.063	1.113	-0.060
If	1.265	1.157	0.108	1.129	-0.065
1 g	1.625	1.465	0.160	1.518	0.107
1 h	1.592	1.427	0.164	1.449	0.144
1 i	1.793	1.556	0.237	1.607	0.186
1 j	1.856	1.727	0.130	1.933	-0.077
1 k	1.752	1.771	-0.019	1.683	0.069
11	2.221	2.386	-0.166	2.182	0.037
1 m	2.378	2.688	-0.313	2.567	-0.192
2a	-0.144	0.181	-0.325	-0.056	-0.088
2c	0.299	0.453	-0.155	0.290	0.009
2 e	0.668	0.634	0.035	0.588	0.081
2f	0.823	0.838	-0.016	0.753	0.069
2 j	1.428	1.358	0.071	1.500	-0.072

Fig. 1. The relationship of $\log P$ values measured by the shake method and predicted by TLC. O , Saturated compounds; \times, unsaturated compounds.

Fig. 2. The relationship of $\log P$ values measured by the shake method and predicted by GLC. O, Saturated compounds; \times, unsaturated compounds.

TABLE V
DATA OF CORRELATION AND THEIR STATISTICS

Compound	y	x	a	b	r
1a-1m	$\log P$	$R_{\text {M }}$	1.452	0.235	0.977
	$\log P$	corr. ΔI	-7.917	2.321	0.987
	$R_{\text {M }}$	corr. $4 I$	-5.334	1.422	0.988
2a-2j	$\log P$	$R_{\text {M }}$	2.079	0.161	0.990
	$\log P$	corr. $A I$	-7.501	1.230	0.991
	$R_{\text {M }}$	corr. ΔI	-3.595	0.668	0.998
1a-2j	$\log P$	$R_{\text {M }}$	1.584	0.102	0.975
	$\log P$	corr. $A I$	-6.523	1.874	0.737
	$R_{\text {M }}$	corr. ΔI	-4.202	1.128	0.771

from TLC and GLC. The values of $\log P$ measured by the shake method and those predicted by TLC and GLC are shown in Table IV and Figs. 1 and 2. Correlation data calculated by a least squares method are shown in Table V. In the first part of the table the three r values are not so good where corrected ΔI values were correlated with R_{M} or $\log P$ values; however, R_{M} and $\log P$ show good correlation. Because the limitations of eqn. 1, saturated and unsaturated compounds were considered separately and in such cases the r values became much greater and more significant for all of the compounds. At the same time, the correlation of $\log P$ with R_{M} did not change significantly. This is understandable because the solvent system represented by the two gas chromatographic stationary phases (Carbowax 20M and OV-25) essentially differs from the water-octanol system.

REFERENCES

1 C. L. Hansch and T. Fujita, J. Amer. Chem. Soc., 85 (1963) 2817.
2 M. S. Tute, Advan. Drug. Res., 6 (1971) 1.
3 R. Collander, Acta Chem. Scand., 3 (1949) 717.
4 A. J. Leo, in E. Ariens (Editor); Drug Design, Academic Press, New York, Vol. 1, 1972, p. 271.
5 J. C. Dearden and E. Tomlinson, J. Pharm. Pharmacol., 24 Suppl. (1972) 115.
E. Tomlinson, J. Chromatogr., 113 (1975) 1.

7 Z. Mészáros, I. Hermecz, L. Vasváry-Debreczy, Á. Horváth, Á. Dávid, P. Dwortsák, M. PongorCsákvári and V. Kováts-Mindler, Magy. Kém. Lap., 31 (1976) 281.
F. Fülöp, I. Hermecz, Z. Mészáros, G. Dombi and G. Bernáth, J. Heterocyctic Chem., 16 (1979) 457.
G. Náray-Szabó, I. Hermecz and Z. Mészáros, J. Chem. Soc., Perkin I, (1974) 1753.
I. Hermecz, Z. Mészáros, L. Vasváry-Debreczy, Á. Horváth, G. Horváth and M. Pongor-Csákvári, J. Chem. Soc. Perkin I, (1977) 789
11 C. B. Boyce and B. V. Millborrow, Nature (London), 208 (1965) 637.
12 G. L. Biagi, A. M. Barbaro, M. F. Gamba and M. C. Guerra, J. Chromatogr., 41 (1969) 371.
13 G. L. Biagi, A. M. Barbaro, M. C. Guerra and M. F. Gamba, J. Chromatogr., 44 (1969) 195.
14 G. L. Biagi, M. C. Guerra, A. M. Barbaro and M. F. Gamba, J. Med. Chem., 13 (1970) 511.
15 G. L. Biagi, A. M. Barbaro, M. C. Guerra and M. F. Gamba, Advan. Chem. Series, (1973) 61.
16 G. L. Biagi, A. M. Barbaro, M. C. Guerra, G. C. Forti and M. E. Fracasso, J. Med. Chem., 17 (1974) 28.

17 K. Waisser and E. Spálenka, in Knoll (Editor), Chemical Structure-Biological Activity Relationships Quantitative Approaches, Akadémiai Kiadó, Budapest, 1980.

18 G. L. Biagi, O. Gondolfi, M. C. Guerra, A. M. Barbaro and G. Cantella-Forti, J. Med. Chem., 18 (1975) 868.

19 G. L. Biagi, A. M. Barbaro, O. Gondolfi, M. C. Guerra and G. Cantelli-Forti, J. Med. Chem., 18 (1975) 873.

20 J. K. Seydel, K. J. Schaper, E. Wempe and H. P. Cordes, J. Med. Chem., 19 (1976) 483.
21 J. K. Seydel, H. Ahrens and W. Losert, J. Med. Chem., 18 (1975) 234.
22 J. K. Seydel and K. J. Schaper, Chemische Struktur und biologische Aktivität von Wirkstoffen, Verlag Chemie, Weinheim, New York, 1979.
23 R. Kaliszan, J. Chromatogr., 220 (1981) 71.
24 W. Steurbau, W. Dejonckheere and R. H. Kips, J. Chromatogr., 160 (1978) 37.
25 B. Rittich, M. Polster and O. Králik, J. Chromatogr., 197 (1980) 43.
26 R. I. Sheehan and S. H. Langer, Ind. Eng. Chem., Process. Des. Develop., 10 No. 1 (1971).
27 J. R. Conder, D. C. Locke and J. H. Purnell, J. Phys. Chem., 73 (1969) 700.
28 D. F. Cadogan, J. R. Conder, D. C. Locke and J. H. Pyurnell, J. Phys. Chem., 73 (1969) 708.
29 K. Boček, J. Chromatogr., 162 (1979) 209.
30 O. Papp, G. Szász, K. Valkó, K. Hankó-Novák, I. Hermecz and I. Kökösi, Acta Pharm. Fenn., 90 (1981) 107.

31 K. Hankó-Novák, G. Szász, O. Papp, J. Vámos and I. Hermecz, Acta Pharm. Hung., 51 (1981) 246.

[^0]: * Present address: Institute of Enzymology, Biological Research Centre, Hungarian Academy of Sciences, Budapest, Hungary

